Observable Sets, Potentials and Schrödinger Equations

نویسندگان

چکیده

Consider the Schrödinger equation: $$\mathrm{i}\partial _tu=Hu$$ over $$\mathbb {R}^n$$ , where H is a self-adjoint operator on $$L^2(\mathbb {R}^n)$$ which sum of $$-\Delta $$ and some potential. This paper aims to study observability for above equation, including observable sets time. We mention that measurable subset $$E\subset \mathbb called an set at time $$T>0$$ if there constant $$C>0$$ (depending T E) such $$\begin{aligned} \int _{\mathbb {R}^n}{|u_0(x)|^2\,\mathrm {d}x}\le C\int _0^{T}\int _E{|e^{-\mathrm{i}tH}u_0|^2\,\mathrm {d}x}\,\mathrm {d}t\; \text{ } all u_0\in L^2(\mathbb {R}^n). \end{aligned}$$ First, we characterize 1-dim case $$H=-\partial _x^2+x^{2m}$$ (with $$m\in {N}:=\{0,1,\dots \}$$ ). More precisely, obtain what follows: (i) When $$m=0$$ {R}$$ only it thick, namely, are constants $$\gamma ,L>0$$ so \left| E \bigcap [x, x+ L]\right| \ge \gamma L\;\;\text{ each }\;\;x\in {R}; (ii) $$m=1$$ ( $$m\ge 2$$ resp.), (at any resp.) weakly namely \varliminf _{x \rightarrow +\infty \frac{|E\bigcap [-x, x]|}{x} >0. These reveal how potentials $$x^{2m}$$ affect observability. Second, follows n-dim $$H=-\Delta +|x|^2$$ (the Harmonic oscillator): For $$r>0$$ exterior domain $$B^c(0,\, r)$$ time; Let $$E_1$$ be half bisected by hyperplane across origin. Then $$T>\frac{\pi }{2}$$ .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Schrödinger wave is observable after all !

It is shown that it is possible to measure the Schrödinger wave of a single quantum system. This provides a strong argument for associating physical reality with a quantum state of a single system in sharp contrast with the usual approach in which the physical meaning of a quantum state is related only to an ensemble of identical systems. An apparent paradox between measurability of a quantum s...

متن کامل

Schrödinger Operators with Singular Potentials †

We describe classical and recent results on the spectral theory of Schrödinger and Pauli operators with singular electric and magnetic potentials

متن کامل

Schrödinger operators with oscillating potentials ∗

Schrödinger operators H with oscillating potentials such as cos x are considered. Such potentials are not relatively compact with respect to the free Hamiltonian. But we show that they do not change the essential spectrum. Moreover we derive upper bounds for negative eigenvalue sums of H.

متن کامل

Schrödinger and Hamilton-jacobi Equations

Time-dependent Schrödinger equation represents the basis of any quantum-theoretical approach. The question concerning its proper content in comparison to the classical physics has not been, however, fully answered until now. It will be shown that there is one-to-one physical correspondence between basic solutions (represented always by one Hamiltonian eigenfunction only) and classical ones, as ...

متن کامل

Strichartz estimates for the Schrödinger and heat equations perturbed with singular and time dependent potentials

In this paper, we prove Strichartz estimates for the Schrödinger and heat equations perturbed with singular and time dependent potentials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2022

ISSN: ['0010-3616', '1432-0916']

DOI: https://doi.org/10.1007/s00220-022-04454-2